## organic compounds

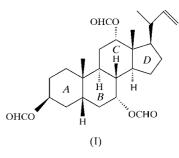
Acta Crystallographica Section C Crystal Structure Communications

ISSN 0108-2701

## $3\beta$ ,7*a*,12*a*-Triformyloxy-24-nor-5 $\beta$ -chol-22-ene

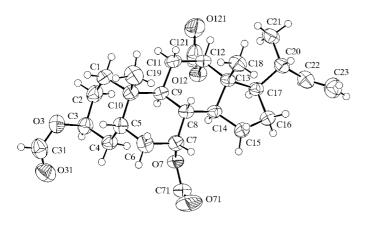
### L. C. R. Andrade,<sup>a</sup> J. A. Paixão,<sup>a</sup>\* M. J. M. de Almeida,<sup>a</sup> E. J. Tavares da Silva,<sup>b</sup> M. L. Sá e Melo<sup>b</sup> and F. M. Fernandes Roleira<sup>b</sup>

<sup>a</sup>CEMDRX, Departamento de Física, Faculdade de Ciências e Tecnologia, Universidade de Coimbra, P-3004-516 Coimbra, Portugal, and <sup>b</sup>Centro de Estudos Farmacêuticos, Laboratório de Química Farmacêutica, Faculdade de Farmácia, Universidade de Coimbra, P-3000-295 Coimbra, Portugal Correspondence e-mail: jap@pollux.fis.uc.pt


Received 22 October 2003 Accepted 24 October 2003 Online 20 December 2003

The title compound, alternatively called 24-nor-5 $\beta$ -chol-22ene-3 $\beta$ ,7 $\alpha$ ,12 $\alpha$ -trivl triformate, C<sub>26</sub>H<sub>38</sub>O<sub>6</sub>, has a *cis* junction between two of the six-membered rings. All three of the sixmembered rings have chair conformations that are slightly flattened and the five-membered ring has a 13 $\beta$ ,14 $\alpha$ -half-chair conformation. The 3 $\beta$ , 7 $\alpha$  and 12 $\alpha$  ring substituents are axial and the 17 $\beta$  group is equatorial. The 3 $\beta$ -formyloxy group is involved in one weak intermolecular C–H···O bond, which links the molecules into dimers in a head-to-head fashion.

#### Comment


The bile acids, such as cholic acid, have proved particularly useful as 'engineering components' for supramolecular chemistry (Davis, 1993). The size, chirality and rigid polycyclic framework of a steroid-based synthetic receptor confers on it a high degree of preorganization. An examination of the structures of synthetic receptors and their synthetic intermediates, on a crystallographic basis, could help to improve our understanding of molecular-recognition principles. In an attempt to construct a steroid-based synthetic receptor, the title compound, (I), has been synthesized as an intermediate according to the method reported by Davis & Walsh (1996), although different reactions have been used, as described in the Experimental section. This cholic acid derivative, without the C(24)OOH group in the  $17\beta$  side chain, contains three formyloxy groups with a  $3\beta$ , $7\alpha$ , $12\alpha$  configuration. Cholic and deoxycholic acids provide tunnel-like spaces, reported as a channel-like inclusion ability (Jones & Nassimbeni, 1990; Miki et al., 1990), in which guest molecules can be accommodated. Examination of the crystal structure of (I) shows no guest molecules and a small solvent-accessible volume (i.e.  $4 \times 15 \text{ Å}^3$ ).

An *ORTEPII* (Johnson, 1976) plot of (I) is shown in Fig. 1. Bond lengths and angles are within the expected ranges (Allen *et al.*, 1987), the mean  $O-Csp^3$ ,  $O-Csp^2$  and  $O=Csp^2$ distances being 1.467 (3), 1.331 (3) and 1.189 (2) Å in the three formyloxy groups, and the mean  $Csp^3-Csp^2$  and  $Csp^2=Csp^2$  distances being 1.503 (3) and 1.304 (4) Å in the 17 $\beta$  group. The distance between the terminal atoms O31 and C23 is 13.275 (4) Å and the C19-C10···C13-C18 pseudotorsion angle is 3.0 (2)°. The *A/B* ring junction is  $5\beta$ ,10 $\beta$ -cis [C1-C10-C5-C4 = 51.3 (3)° and C9-C10-C5-C6 = 55.1 (2)°]. The angle between ring *A* and the least-squares plane that includes the atoms of rings *B*, *C* and *D* is 63.16 (5)°. Rings *A*, *B* and *C* have slightly flattened chair conformations, with average torsion angles of 52.6 (7), 52.0 (14) and 55.0 (16)°, respectively, as shown by the values of the  $\theta$ 



puckering parameter [Cremer & Pople, 1975; Boeyens, 1978; 177.0 (3), 8.0 (2) and 6.6 (2)° for A, B and C]. The fivemembered ring D assumes a  $13\beta$ , $14\alpha$ -half-chair conformation [puckering parameters, calculated using the atom sequence C13–C17:  $q_2 = 0.461$  (2) Å and  $\varphi_2 = 195.4$  (3)°; pseudo-rotation (Altona et al., 1968) and asymmetry parameters:  $\Delta = -3.8 \ (2)^{\circ}, \ \varphi_m = 46.8 \ (1)^{\circ}, \ \Delta C_s(13) = 16.0 \ (2)^{\circ}, \ \Delta C_s(14) =$ 19.4 (2)° and  $\Delta C_2(13,14) = 2.7 (2)°$ ]. This unusual ring conformation is different from that observed in cholic acid (Jones & Nassimbeni, 1990). The three  $3\beta$ , $7\alpha$ , $12\alpha$ -ring substituents are axial (Luger & Bulow, 1983), with angles of 6.3 (2), 9.9 (1) and 4.6 (1) $^{\circ}$ , respectively. The angle between the planes defined by the  $3\beta$  group and ring A is 80.5 (2)°, and the angles between the planes of the  $7\alpha$  and  $12\alpha$  groups and the mean plane of rings B, C and D are 85.6 (3) and 89.6  $(2)^{\circ}$ . The  $17\beta$  chain is equatorial. The orientation of the C5–C17 reference plane relative to the C17/C20/C21 and C20/C22/C23 least-squares planes is 19.54 (19) and 77.30 (19)°, respectively, with the angle between these two planes being  $85.0 (2)^\circ$ . By comparison with the structure of cholic acid (Jones & Nassimbeni, 1990; Miki et al., 1990), the absence of the COOH group in the side chain attached to atom C17 may be responsible for the unusual values of the C17-C20-C22-C23 and C21-C20-C22-C23 torsion angles [-109.7 (3) and 126.7 (3)°], corresponding to -ac and +ac descriptors, respectively, instead of -ap and +sc.

The crystal structure contains no classical hydrogen bonds and thus cohesion of the structure is mainly achieved by van der Waals interactions and weak  $C-H \cdots O$  interactions. Four intramolecular  $C-H \cdots O$  short contacts are present; the C4-H4 $A \cdots \circ O$ 7 interaction is probably a destabilizing interaction, while the other three may be qualified as weak hydrogen



#### Figure 1 The molecular structure of (I), showing the atomic numbering scheme.

bonds, with distances and angles in the ranges 2.750 (3)–2.929 (2) Å and 102–108°, respectively (Table 1). An intermolecular C31–H31···O31<sup>i</sup> interaction [symmetry code: (i)  $x - \frac{1}{2}, \frac{1}{2} - y, 1 - z$ ] is also present, linking the molecules head-to-head into dimers in a head-to-head fashion.

### **Experimental**

The title compound was prepared according to previously described procedures, starting from formylation of cholic acid (Tserng & Klein, 1977) with formic and perchloric acids, followed by oxidative decarboxylation (Concépcion *et al.*, 1986) with iodosobenzene diacetate, selective  $3\alpha$ -deformylation with sodium acetate in methanol, and finally a C-3 Mitsunobu inversion (Bose *et al.*, 1973) with formate, diethyl azodicarboxylate and triphenylphosphine. Crystals suitable for X-ray analysis were obtained from an ethyl acetate solution by slow evaporation. <sup>1</sup>H NMR (300 MHz, CDCl<sub>3</sub>):  $\delta$  8.17 (1H, *s*), 8.09 (1H, *s*), 8.05 (1H, *s*), 5.67–5.55 (1H, *m*), 5.27 (1H, *br t*), 5.16 (1H, *br s*), 5.07 (1H, *d*, *J* = 2.4 Hz), 4.91 (1H, *dd*, *J* = 17.1, 1.8 Hz), 4.83 (1H, *dd*, *J* = 10.2, 1.8 Hz), 0.98 (3H, *s*), 0.95 (3H, *d*, *J* = 6.6 Hz), 0.78 (3H, *s*); <sup>13</sup>C NMR (75.25 MHz, CDCl<sub>3</sub>):  $\delta$  160.7, 160.5, 144.2, 112.3, 75.2, 71.0, 70.1, 46.8, 45.0, 43.0, 40.5, 37.7, 36.3, 34.5, 32.7, 30.9, 30.1, 28.1, 27.3, 25.8, 24.7, 22.7, 19.5, 12.3.

#### Crystal data

 $C_{26}H_{38}O_6$   $M_r = 446.56$ Orthorhombic,  $P2_12_12_1$  a = 7.365(3) Å b = 15.5549(12) Å c = 21.199(4) Å V = 2428.6(10) Å<sup>3</sup> Z = 4  $D_x = 1.221 \text{ Mg m}^{-3}$ 

#### Data collection

Nonius MACH3 diffractometer  $\omega$ -2 $\theta$  scans Absorption correction:  $\psi$  scan (North *et al.*, 1968)  $T_{min} = 0.744, T_{max} = 0.847$ 4523 measured reflections 2731 independent reflections 2293 reflections with  $I > 2\sigma(I)$  Cu  $K\alpha$  radiation Cell parameters from 25 reflections  $\theta = 22.7-28.7^{\circ}$  $\mu = 0.69 \text{ mm}^{-1}$ T = 293 (2) K Prism, colourless  $0.37 \times 0.24 \times 0.24 \text{ mm}$ 

 $R_{\text{int}} = 0.031$   $\theta_{\text{max}} = 71.9^{\circ}$   $h = 0 \rightarrow 9$   $k = 0 \rightarrow 19$   $l = -26 \rightarrow 26$ 3 standard reflections every 200 reflections intensity decay: 9.9%

#### Refinement

ł

| Refinement on $F^2$             | $w = 1/[\sigma^2(F_a^2) + (0.0653P)^2]$                    |
|---------------------------------|------------------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.035$ | + 0.1429P]                                                 |
| $wR(F^2) = 0.101$               | where $P = (F_o^2 + 2F_c^2)/3$                             |
| S = 1.03                        | $(\Delta/\sigma)_{\rm max} < 0.001$                        |
| 2731 reflections                | $\Delta \rho_{\rm max} = 0.15 \ {\rm e} \ {\rm \AA}^{-3}$  |
| 292 parameters                  | $\Delta \rho_{\rm min} = -0.13 \ {\rm e} \ {\rm \AA}^{-3}$ |
| H-atom parameters constrained   |                                                            |
|                                 |                                                            |

# Table 1 Hydrogen-bonding geometry (Å, $^{\circ}$ ).

| <i>D_</i> Н | H4                   | D4                                                                                                    | $D - H \cdots A$                                                                                                                                                              |
|-------------|----------------------|-------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $D = \Pi$   | II····A              | D····A                                                                                                | $D=\prod \cdots A$                                                                                                                                                            |
| 0.97        | 2.35                 | 3.029 (3)                                                                                             | 126                                                                                                                                                                           |
| 0.98        | 2.37                 | 2.750 (3)                                                                                             | 102                                                                                                                                                                           |
| 0.98        | 2.53                 | 2.929 (2)                                                                                             | 104                                                                                                                                                                           |
| 0.98        | 2.43                 | 2.890 (3)                                                                                             | 108                                                                                                                                                                           |
| 0.93        | 2.49                 | 3.396 (4)                                                                                             | 166                                                                                                                                                                           |
|             | 0.98<br>0.98<br>0.98 | 0.97         2.35           0.98         2.37           0.98         2.53           0.98         2.43 | 0.97         2.35         3.029 (3)           0.98         2.37         2.750 (3)           0.98         2.53         2.929 (2)           0.98         2.43         2.890 (3) |

Symmetry code: (i)  $x - \frac{1}{2}, \frac{1}{2} - y, 1 - z$ .

Friedel pairs were merged because the anomalous dispersion of the light atoms at the Cu  $K\alpha$  wavelength was negligible, and thus the absolute configuration was not determined from the X-ray data. However, the configuration was known from the synthesis route.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *PLATON* (Spek, 2003); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*II (Johnson, 1976).

This work was supported by Fundação para a Ciência e Tecnologia, Portugal.

Supplementary data for this paper are available from the IUCr electronic archives (Reference: SK1674). Services for accessing these data are described at the back of the journal.

#### References

- Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. & Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1–19.
- Altona, C., Geise, H. J. & Romers, C. (1968). Tetrahedron, 24, 13-32.
- Boeyens, J. C. A. (1978). J. Cryst. Mol. Struct. 8, 317-320.
- Bose, A. K., Lal, B., Hoffman, W. A. & Manhas, M. S. (1973). *Tetrahedron Lett.* **18**, 1619–1622.
- Concépcion, J. I., Francisco, C. G., Freire, R., Hernández, R., Salazar, J. A. & Suárez, E. (1986). J. Org. Chem. 51, 402–404.
- Cremer, D. & Pople, J. A. (1975). J. Am. Chem. Soc. 97, 1354-1358.
- Davis, A. P. (1993). Chem. Soc. Rev. 22, 243-253.
- Davis, A. P. & Walsh, J. J. (1996). Chem. Commun. 3, 449-451.
- Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Jones, E. L. & Nassimbeni, L. R. (1990). Acta Cryst. B46, 399-405.
- Luger, P. & Bulow, R. (1983). J. Appl. Cryst. 16, 431-432.
- Miki, K., Kasai, N., Shibakani, M., Chirachanchai, S., Takemoto, K. & Miyata, M. (1990). Acta Cryst. C46, 2442–2445.
- North, A. C. T., Phillips, D. C. & Mattews, F. S. (1968). Acta Cryst. A24, 351–359.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
- Spek, A. L. (2003). J. Appl. Cryst. 36, 7-13.
- Tserng, K. & Klein, P. D. (1977). Steroids, 29, 635-648.